Publications
†Equally contributing first authors
Rering, CC, Rudolph AB, Li, QB, Read, QD, Muñoz, PR, Ternest, JJ, Hunter, CT. 2024. A quantitative survey of the blueberry (Vaccinium spp.) culturable nectar microbiome: variation between cultivars, locations, and farm management approaches. FEMS Microbiol. Ecol. fiae020.
Rering, CC, Lanier, AM, Peres, NA. 2023. Blueberry floral probiotics: nectar microbes inhibit the growth of Colletotrichum pathogens. J Appl. Microbiol. 134:lxad300.
Rering, CC†, Quadrel, A†, Uranaeja-Bernat, P, Beck, JJ, Ben-Zvi, Y, Khodadadi, F, Acimovic, SG, Rodriguez-Saona, CR. 2023. Blueberries infected with the fungal pathogen Colletotrichum fioriniae release odors that repel Drosophila suzukii. Pest Manag. Sci. 79:4906-4920.
Cheseto, X, Rering, CC, Broadhead, GT, Torto, B, Beck, JJ. 2023. Early infestation volatile biomarkers of fruit fly Bactrocera dorsalis (Hendel) ovipositional activity in mango (Mangifera indica L.). Phytochemistry 206:113519.
Yactayo Chang, JP, Mendoza, JS, Willms, SD, Beck, JJ, Rering, CC, Block, AK. 2021. Zea mays volatiles that influence oviposition and feeding behaviors of Spodoptera frugiperda. J. Chem. Ecol. 47: 799-809.
Rering CC, Rudolph AB, Beck JJ. 2021. Pollen and yeast change nectar aroma and nutritional content alone and together, but honey bee foraging reflects only the avoidance of yeast. Environ. Microbiol. 23: 4141-4150.
Crowley-Gall AC†, Rering CC†, Rudolph AB, Vannette RL, Beck JJ. 2021. Volatile microbial semiochemicals and insect perception at flowers. Curr. Opin. Insect Sci. 44: 23-34.
Rering CC, Gaffke, AM, Rudolph AB, Beck JJ, Alborn, HT. 2020. A comparison of collection methods for microbial volatiles. Front. Sustain. Food Syst. 4: 598967.
Rering CC, Franco JG, Yeater KM, Mallinger RE. 2020. Drought stress changes floral volatile emissions, and reduces nectar, pollinator visitation, and seed set in a global plant. Ecosphere 11: e03254.
Rering CC, Vannette RL, Schaeffer RN, Beck JJ. 2020. Microbial co-occurrence in floral nectar affects metabolites and attractiveness to a generalist pollinator. J. Chem. Ecol. 46: 659-667.
Hengel MJ, Wong JW, Redman ZC, Rering CC, Williams KL. 2020. Analysis of pesticides in plant foods by QuEChERS and gas chromatography-mass spectrometry: An undergraduate laboratory experiment. J. Chem. Educ. 97: 226-233.
Hunter, CT, Block, AK, Christensen, SA, Li, QB, Rering, CC, Alborn, HT. 2020. Setaria viridis as a model for translational genetic studies of jasmonic acid-related insect defenses in Zea mays. Plant Sci. 291: 110329.
Schaeffer, RN, Rering, CC, Maalouf, I, Beck, JJ, Vannette, RL. 2019. Microbial metabolites elicit distinct olfactory and gustatory preferences in bumblebees. Biol. Lett. 15: 20190132.
Block, AK, Hunter, CT, Sattler, SE, Rering, CC, Mcdonald, S, Basset, GJ, Christensen, SA. 2019. Fighting on two fronts: elevated insect resistance in flooded maize. Plant Cell Environ. 43: 223-234.
Rering, CC, Beck, JJ, Hall, GW, McCartney, MM, Vannette, RL. 2018. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. 3:750-759.
Block, AK, Hunter, CT, Rering, CC, Christensen, SA, Meagher, RL. 2018. Contrasting insect attraction and herbivore‑induced plant volatile production in maize. Planta. 248:105-116.
Beck JJ, Alborn HT, Block AK, Christensen SA, Hunter CT, Rering CC, Seidl-Adams I, Stuhl CJ, Torto B, Tumlinson JH. 2018. Interactions among plants, insects, and microbes: elucidation of inter-organismal chemical communications in agricultural ecology. J. Agric. Food Chem. 66:6663-6674.
Rering, CC, Williams, KL, Hengel, MJ, Tjeerdema, RS. 2017. Comparison of direct and indirect photolysis in imazosulfuron photodegradation. J. Agric. Food Chem. 65: 3103-3108.